
CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

F3 Faculty of Electrical Engineering
Department of Control Engineering

Bachelor’s Thesis

NuttX RTOS Driver for Single
Unshielded Twisted Pair
Communication

Michal Matiáš

May 2025
Supervisor: Ing. Pavel Píša, Ph.D.

ZADÁNÍ BAKALÁŘSKÉ PRÁCE

I. OSOBNÍ A STUDIJNÍ ÚDAJE

492164 Osobní číslo:​Michal Jméno:​Matiáš Příjmení:​

Fakulta elektrotechnická Fakulta/ústav:​

Zadávající katedra/ústav: Katedra měření

Otevřená informatika Studijní program:​

Internet věcí Specializace:​

II. ÚDAJE K BAKALÁŘSKÉ PRÁCI

Název bakalářské práce:​

Ovladač pro komunikaci systému RTOS NuttX po jednom sdíleném páru vodičů

Název bakalářské práce anglicky:​

NuttX RTOS Driver for Single Unshielded Twisted Pair Communication

Jméno a pracoviště vedoucí(ho) bakalářské práce:​

Ing. Pavel Píša, Ph.D. katedra řídicí techniky FEL

Jméno a pracoviště druhé(ho) vedoucí(ho) nebo konzultanta(ky) bakalářské práce:​

Termín odevzdání bakalářské práce: 23.05.2025 Datum zadání bakalářské práce: 24.01.2025

Platnost zadání bakalářské práce: do konce letního semestru 2025/2026

podpis proděkana(ky) z pověření děkana(ky)​podpis vedoucí(ho) ústavu/katedry​

III. PŘEVZETÍ ZADÁNÍ

Student bere na vědomí, že je povinen vypracovat bakalářskou práci samostatně, bez cizí pomoci, s výjimkou poskytnutých konzultací.​
Seznam použité literatury, jiných pramenů a jmen konzultantů je třeba uvést v bakalářské práci.​
 ​

Matiáš Michal​
Podpis studenta​Datum převzetí zadání​

© ČVUT v Praze, Design: ČVUT v Praze, VIC Strana 1 z 2 CVUT-CZ-ZBP-2015.1

ZADÁNÍ BAKALÁŘSKÉ PRÁCE

I. OSOBNÍ A STUDIJNÍ ÚDAJE

492164 Osobní číslo:​Michal Jméno:​Matiáš Příjmení:​

Fakulta elektrotechnická Fakulta/ústav:​

Zadávající katedra/ústav: Katedra měření

Otevřená informatika Studijní program:​

Internet věcí Specializace:​

II. ÚDAJE K BAKALÁŘSKÉ PRÁCI

Název bakalářské práce:​

Ovladač pro komunikaci systému RTOS NuttX po jednom sdíleném páru vodičů

Název bakalářské práce anglicky:​

NuttX RTOS Driver for Single Unshielded Twisted Pair Communication

Pokyny pro vypracování:​

The simplicity of the single shared pair communication, which allows interconnecting multiple units, is desired​
for many industrial applications with low and mid-data throughput requirements for its simplicity and cost. This​
is a typical area for CAN/CAN FD communication, which guarantees deterministic arbitration by priority for RT​
applications. However, mapping of typical TCP/IP-based communications to CAN FD frames adds additional​
complexity for less timing-demanding applications. The solution is CAN XL standard, but chips supporting CAN​
XL are still rare. Another option is the 802.3cg 10BASE−T1S variant of Ethernet communication. This project​
aims to test a combination of the latter option with NuttX RTOS and develop and integrate drivers for the NuttX​
project.​
1) familiarize with NuttX RTOS operating system and perspective single pair automotive communication​
technologies​
2) prepare short overview and analysis of available solutions; preliminary search reveals OnSemi 10BASE-T1S​
NCN26010 MAC with SPI interface to microcontroller as suitable choice​
3) choose one of NuttX supported platforms as a base for chosen solution drivers development and implement​
driver​
4) prepare some application for demonstration, i.e. simple DC motor control or more advanced PMSM motor​
controller with remote control over chosen communication standard​
5) document the solution and demo application. Send the implemented driver for review to NuttX mainline and​
attempt to resolve received feedback.​

Seznam doporučené literatury:​

1. NuttX Apache project https://nuttx.apache.org/​
2. OnSemi 10 Mb/s Industrial Ethernet MAC + PHY IC Controller NCN26010 (802.3cg 10BASE−T1S) Datasheet​
https://www.onsemi.com/products/interfaces/ethernet-controllers/NCN26010​
3. Janoušek, J.: Open-source Motion Control on Mid-range and Small FPGAs; Master's Thesis; 2024;​
https://dspace.cvut.cz/bitstream/handle/10467/117046/F3-DP-2024-Janousek-Jakub-DP_Janousek.pdf​
4. Espressif ESP32-C6 SoC, with a 32-bit RISC-V core https://www.espressif.com/en/products/socs/esp32-c6​

© ČVUT v Praze, Design: ČVUT v Praze, VIC Strana 2 z 2 CVUT-CZ-ZBP-2015.1

FAKULTA ELEKTROTECHNICKÁ
FACULTY OF ELECTRICAL ENGINEERING
Technická 2
166 27 Praha 6

DECLARATION

I, the undersigned

Matiáš Michal Student's surname, given name(s):
492164 Personal number:
Open Informatics Programme name:

declare that I have elaborated the bachelor’s thesis entitled

NuttX RTOS Driver for Single Unshielded Twisted Pair Communication

independently, and have cited all information sources used in accordance with the Methodological Instruction
on the Observance of Ethical Principles in the Preparation of University Theses and with the Framework Rules
for the Use of Artificial Intelligence at CTU for Academic and Pedagogical Purposes in Bachelor’s and Continuing
Master’s Programmes.

I declare that I used artificial intelligence tools during the preparation and writing of this thesis. I verified the
generated content. I hereby confirm that I am aware of the fact that I am fully responsible for the contents of
the thesis.

Michal Matiáš In Prague on 21.05.2025
..

student's signature

Acknowledgement / Declaration

Zde bych chtěl poděkovat vedoucímu
práce Ing. Pavlovi Píšovi, Ph.D. za jeho
cenné rady a diskuze nad technickými
tematy.
Poděkování patří také mým rodičům,
bez jejichž podpory bych nemohl stu-
dovat na vysoké škole.

Prohlašuji, že jsem předloženou prá-
ci vypracoval samostatně a že jsem
uvedl veškeré použité informační zdroje
v souladu s Metodickým pokynem o do-
držování etických principů při přípravě
vysokoškolských závěrečných prací.

V Praze dne 23. 5. 2025

. .

iii

Abstrakt / Abstract

Tato práce se věnuje evaluaci a in-
tegraci levného řešení pro multidrop
komunikaci na krátkou vzdálenost s
důrazem na spolehlivost a real-time
vlastnosti, která lze použít ve vestavě-
ných systémech. Na základě přehledu
použitelných standardů je navrženo ře-
šení sestávající z levných MCU zařízení
v kombinaci s SPI MAC-PHY Etherne-
tovými zařízeními třídy 10BASE-T1S.
RTOS Apache NuttX je navržen jako
vhodný operační systém pro použitá
MCU zařízení. Jedna kapitola je věno-
vaná přehledu vnitřní logiky síťových
driverů NuttXu. Tato kapitola tvoří
teoretický podklad pro hlavní výstup
projektu, kterým je implementace kon-
krétního driveru pro SPI MAC-PHY
NCV7410 od výrobce Onsemi. Ke konci
je pozornost věnována použitým meto-
dám pro evaluaci a testování implemen-
tovaného driveru. Poté jsou vlastnosti
systému ověřeny pomocí jednoduchého
drive-by-wire demonstrátoru.

Klíčová slova: NuttX, 10BASE-T1S,
10BASE-T1L, OA SPI Protocol, RTOS

Překlad titulu: RTOS NuttX driver
pro komunikaci po jedné nestíněné
dvojlince

The thesis aims to evaluate and inte-
grate a low-cost solution for a small area
multidrop communication with focus on
reliability and real-time predictability
usable in embedded systems. Based
on a review of applicable standards, an
integration of cheap MCU devices with
10BASE-T1S Ethernet SPI MAC-PHYs
is proposed. The Apache NuttX RTOS
is proposed as a suitable operating sys-
tem for the MCU devices. An overview
of NuttX network driver internals is
provided in a dedicated chapter to pro-
vide background for the major outcome
of the project – the implementation
of Onsemi NCV7410 SPI MAC-PHY
NuttX driver for the NuttX operating
system. At the end, the methods used
for an evaluation and testing of the
implemented driver are discussed. The
system properties are then verified on a
simple drive-by-wire demonstrator.

Keywords: NuttX, 10BASE-T1S,
10BASE-T1L, OA SPI Protocol, RTOS

iv

Contents /

1 Introduction 1

2 Technology Overview and
Objectives 2

2.1 The Target Environment 2
2.2 Selected Communication

Standards 3
2.2.1 Local Interconnect

Network (LIN) 3
2.2.2 RS-485 3
2.2.3 Controller Area Net-

work (CAN) 4
2.2.4 CAN XL 4
2.2.5 IEEE 10BASE-T1S 4

2.3 Technology Choice Discussion . . 5
2.4 Operating System Selection . . . 6
2.5 NuttX 6

2.5.1 NuttX Configuration 6
2.6 OPEN Alliance 10BASE-

T1x MAC-PHY Serial Interface . 7
2.6.1 Control Transaction

Protocol 7
2.6.2 Data Transaction Protocol . 8

2.7 Testing MAC-PHY Hard-
ware (Onsemi NCV7410) 9

2.8 Testing Host Device Hard-
ware (ESP32-C6) 10

3 NuttX Network Drivers 11
3.1 A Network Driver 11
3.2 NuttX Network Stack Interface 11

3.2.1 Network Device Driver
State Structure 11

3.2.2 Interfacing Callback
Functions 12

3.2.3 Network Stack Functions . 12
3.2.4 Expected format of Da-

ta Link Layer Packet . . . 13
3.3 IOB Data Structure 14

3.3.1 IOB Allocation Mechanism 14
3.3.2 Advantages of IOB buffers 14

3.4 Upper-Half Network Driver . . 15
3.4.1 Netpackets 16
3.4.2 Lower-Half specific data . . 17

3.5 Work Queue 18
3.5.1 Executing Code in

NuttX Work Queues 18

3.5.2 Work Queue Drawbacks . . 18
3.6 Inheritance in C 18

4 NCV7410 Network Driver
Implementation 20

4.1 Driver Specific Data 20
4.2 Configuration Exchange

Primitives 21
4.3 Driver Initialization 21

4.3.1 Board-Specific Initial-
ization 22

4.3.2 General Driver Initial-
ization 22

4.3.3 Configuring the MAC-
PHY 22

4.3.4 OA Protocol Setup 22
4.3.5 MAC Address Filtering . . 23

4.4 Switching the Interface On
and Off 23

4.5 Asynchronous Code Execution 23
4.6 Buffer Management and

Data Exchange 24
4.6.1 Transmitting Data 24
4.6.2 Receiving Data 24
4.6.3 I/O Work 25
4.6.4 Netpacket Allocation . . . 25
4.6.5 Quota Considerations . . . 25

4.7 Interrupt Handling 26
4.8 Thread Synchronization 26

5 System Evaluation and Testing 28
5.1 Performance Evaluation 28

5.1.1 Network Utilities 28
5.1.2 Testing Network 28
5.1.3 Evaluation Scenarios

and Results 29
5.2 Testing 29
5.3 Demonstrator Device 30

6 Conclusion and Further Work 31

A Output of Network Evalua-
tion Utilities 33

References 35

B List of Abbreviations 36

v

/ Figures

2.1 SPI Control Transaction7
2.2 SPI Chunk Data Transaction8
2.3 TX Data Chunk Header8
2.4 RX Data Chunk Footer9
3.1 NuttX Network Layers 17
5.1 Testing Network 29

vi

Chapter 1
Introduction

The desire for digital communication in environments where focus is put on robustness,
real-time properties, and the cost of the end devices, is common for various fields of
industry. This led to the development of various communication technologies, serving
various use cases. Some of them evolved into world-wide standards. This work proposes
a communication solution integrating IEEE 10BASE-T1S Ethernet enabled SPI MAC-
PHYs and the NuttX operating system.

Among the main advantages of the proposed solution are out-of-the-box compati-
bility with Ethernet standards and thus the TCP/IP protocol family, application code
portability, open-source infrastructure, decent data rate, and a small form factor.

The second chapter lays out a set of requirements for the solution, then proceeds to
provide an overview of selected communication standards. By the end of the chapter,
10BASE-T1S SPI MAC-PHYs and NuttX RTOS are selected as suitable technologies
and are further discussed.

The chapter 3 presents the concepts behind NuttX network drivers. Different ap-
proaches to interfacing with the NuttX network stack are discussed. Descriptions of
the IOB buffer structure and NuttX work queues are presented. The chapter is con-
cluded by a note on a method common in NuttX for implementing inheritance in the
C language.

The fourth chapter focuses on the implementation of the NuttX network driver for
the NCV7410 SPI MAC-PHY. The emphasis is placed on the explanation of the internal
logic of the driver.

In chapter 5, the setup for the evaluation of the system performance is presented.
Results of the performance evaluation are shortly discussed. A few techniques used to
test the system’s features are mentioned.

The last chapter summarizes the work and discusses future goals.

1

Chapter 2
Technology Overview and Objectives

This chapter defines the target environment through a set of requirements for the com-
munication system. Based on the requirements, a selection of communication standards
is made and a brief overview of each selected standard is provided. At the end of the
chapter, IEEE 10BASE-T1S is selected for the implementation of the communication
system.

2.1 The Target Environment

To limit the selection of applicable technologies, the requirements for the designed
system first need to be defined. For this work, the target environment is an environment
where the following properties are needed.

. Reliability. Determinism. Low Cost. Multidrop Support. Compact Size. Ease of Integration

Different subsets of the above properties are widely required in automotive, aerospace,
industrial production, space applications, and other fields. A brief elaboration on the
mentioned characteristics follows.

The reliability property ensures that a message sent between devices over the chosen
channel arrives at the destination and arrives unaltered. The reliability is desired even
in EMI noisy environments (e.g. tram yards, railway automation, high power servo
systems). Due to this requirement, a wired solution is preferred.

Determinism refers to the predictability of the system. That is: a message sent over
the channel arrives at the destination in a known bounded time.

Low-cost system in the context of this work is considered a system that allows in-
dividuals to use the system for prototyping or use in technological projects without
the cost of the system being a major limiting factor. The ideal solution would allow
low-cost and widely available MCUs to be used as end devices.

It is preferable that the system allows communication between multiple nodes in
the network. By multiple nodes, support for up to at least three or more devices is
expected. As in contrast with point-to-point only communication standards. This is
expressed by the requirement for multidrop support.

The system should have a compact size to allow integration into embedded systems.
The ease of integration of the system is the property to fit well into a larger system

(possibly comprising other currently used technologies) without excessive work. This
demand is put on all layers of the target solution – physical, protocol, software.

2

. 2.2 Selected Communication Standards

2.2 Selected Communication Standards

This section presents a brief overview of a set of candidate communication standards
that at least partly fulfill the declared requirements.

2.2.1 Local Interconnect Network (LIN)

Local Interconnect Network is a communication standard first defined for use as a
low-cost, low-bandwidth – up to 20 kbit/s – communication solution in automobiles
where the usage of CAN for all devices would be too costly. On the physical layer, a
single conductor (and the ground reference) is used for the exchange of information.
The conductor is shared by up to 16 devices. Among the devices, there is a single
commander node and possibly multiple responder nodes. The commander initiates all
data transactions on the bus. This means a collision cannot emerge if all nodes behave
correctly. On the other hand, this also makes it impossible for other nodes to initiate
communication. Also, this implies that the LIN bus is inherently half-duplex.

LIN bus intended workflow consists of the commander polling data from the indi-
vidual responder nodes or sending configuration data to them. Therefore, while the
LIN physical layer topology is of the type bus, the protocol logic rather imitates the
star topology, where the commander is the central element and the responder nodes
are addressed in a point-to-point manner.

As a native LIN physical layer is usually not present on common MCUs, a specialized
physical layer device must be added to the design. The UART peripheral is typically
used to interface with the physical layer device.

The LIN bus integrates well with the CAN bus. This property is often utilized
in vehicles, where devices connected through the LIN bus create sub-networks to the
backbone CAN network.

Using specialized hardware, it is possible to transfer LIN data over DC power lines
using high-frequency modulation. Due to this, complexity and cost of cabling can be
further reduced.

2.2.2 RS-485

The RS-485 is a physical layer specification. A balanced interface is used to achieve
a good resistance against electromagnetic interference (EMI). A single twisted pair
is used as a medium to carry the balanced signal. A full-duplex connection can be
achieved with four conductors.

Multiple devices can be connected to the shared twisted pair using short stubs. The
devices that are not transmitting at the moment can switch their output pins to the
high-impedance mode to allow other nodes to transmit. Multidrop can be achieved
through this capability. However, due to the fact that the RS-485 only defines the
physical layer, the arbitration method must be implemented by the designer of the sys-
tem, or another higher-level standard utilizing RS-485 must be used. Typical methods
are central coordinator, token passing, or time division.

The maximum data rate depends on the length of the twisted pair segment. At 12
meters, the maximum data rate is 10 Mbit/s [1].

The RS-485 hardware is low-cost, widely used, and widely available. However, it
should be noted that the price of the system increases when galvanic isolation is desired.

As RS-485 specifies only the physical layer, out-of-the-box compatibility with existing
and used higher-level protocols cannot be achieved.

3

2. Technology Overview and Objectives .
2.2.3 Controller Area Network (CAN)

Controller Area Network Protocol is a communication solution defined by a multitude
of standards. Those standards define the data link layer, various options for the physical
layer, and an application layer (CANopen). For its favorable properties, the CAN bus
is the dominating serial network for embedded control systems in passenger cars [2].
The most significant properties of the CAN protocol are multidrop capability, error
detection functions and automatic erroneous frame retransmission, and bus arbitration
through data prioritization. The data rate of the classic CAN is typically 500 kbit/s.
For a newer standard – CAN FD – the data rate can vary, ranging up to 5 - 8 Mbit/s.

The communication over the CAN protocol is organized into frames. Each frame
consists of (among other fields) a message identifier and payload data. The payload
data length is up to 8 bytes. In the case of the CAN FD, the payload data length
can be up to 64 bytes. The identifier uniquely defines the type of the message that
is being transmitted in the data payload. The identifier also defines the priority of
the message. The identifier is at the start of each frame. Due to this clever design,
collisions are resolved during the start of the frame transmission without incurring any
delays needed for collision resolution. If multiple devices transmit data at the start of
the frame transmission, the first one to see a logical zero on the bus while transmitting
a logical one will stop transmitting until the next transmission opportunity. This way,
the frame with the lowest ID is prioritized.

The CAN controller is available on many low-cost MCU chips. The physical layer
driver must be provided separately. The physical layer drivers are available and low-
cost. However, the cost increases if galvanic isolation is desired.

In the CAN ecosystem, several standardized application layer solutions are defined.
These solutions provide a concise way for a programmer to be able to implement a de-
sired communication between the nodes while being freed of the burden of dealing with
hardware-specific details. Although these protocols are useful in the specific domain,
the CAN protocol does not provide direct interoperability with communication stacks
used elsewhere, namely TCP/IP protocol stack. This limitation stems from the fact
that the two standards were not designed with mutual interoperability in mind. For
example, minimum IPv4 MTU is 68 bytes. That is more than even the CAN FD can
handle in one frame. This alone makes it difficult to bridge these two technologies.

2.2.4 CAN XL
CAN XL is historically the newest standard of the CAN family. While it retains back-
ward compatibility with the classical CAN and the CAN FD standards, it offers up to
20 Mbit/s data rate and data payload sizes from 1 to 2048 bytes long [3]

In contrast to previous CAN standards, the CAN XL was designed with interoper-
ability with internet protocols in mind. The large payload size allows even full Ethernet
frame tunneling.

Although the promise of the CAN XL is appealing, the presence of the CAN XL
controllers in consumer-grade MCUs has yet to emerge.

2.2.5 IEEE 10BASE-T1S
The 10BASE-T1S is an Ethernet standard defining 10 Mbit/s communication over a
single unshielded twisted pair segment. The standard was designed for robust perfor-
mance in electromagnetically noisy environments and with deterministic properties in
mind [4]. The IEEE standard defines that half-duplex communication must be sup-
ported, and two mutually exclusive modes of operation are specified.

4

. 2.3 Technology Choice Discussion

. Full-Duplex, Point-to-Point communication over up to at least 15 m segment. Half-Duplex multidrop of up to at least 8 devices over up to at least 25 m mixing
segment

Based on the requirements outlined in 2.1, the latter mode of operation seems more
suitable for this work.

Due to the multidrop nature of the standard, the shared mixing element must be
protected from transmission conflicts by employing an arbitration method. For this
purpose, 10BASE-T1S uses the traditional Carrier Sense Multiple Access with Collision
Detection (CSMA/CD).

The CSMA/CD allows all nodes to transmit at any time there is no traffic on the
bus. This can lead to the situation where two or more nodes start to transmit data
simultaneously. This is detected by the respective nodes. To resolve the conflict, each
of the conflicting nodes sets its local timer to a random amount and waits until the
timer elapses. The node whose timer elapses first starts its transmission. In the case
where the collision is detected again, the described procedure repeats.

As a result of its design, the CSMA/CD can cause an unpredictable jitter in latency
and degraded throughput. This is especially true for buses with heavy traffic, where
most devices need to transmit data frequently. The 10BASE-T1S aims to satisfy the
demand for predictability by introducing a special reconciliation sublayer called Physi-
cal Layer Collision Avoidance (PLCA) [4]. The PLCA aims to improve bus determinism
and improve latency and throughput by distributing transmission opportunities to in-
dividual nodes in a round-robin manner. PLCA does not need to be set up in all nodes
on the segment. Other devices may rely solely on the CSMA/CD and yet be able to
communicate with the PLCA-utilizing devices. When using PLCA on all nodes on
the mixing segment, the bus is behaving deterministically. If a node wants to trans-
mit a packet, the time to wait for the transmit opportunity is upper-bounded by the
maximum period of the PLCA transmission opportunity distribution cycle.

10BASE Ethernet MAC controllers are available in low-cost MCUs. Only the pairing
with the appropriate 10BASE-T1S PHY must be done. In some cases, the native MAC
controller is not available on the selected MCU, or the number of MCU pins needed
by the respective PHY to communicate with the MAC would be too limiting. An
alternative exists. A range of 10BASE-T1S MAC-PHY devices with the SPI interface
is produced by several manufacturers. These devices share a common protocol for the
SPI communication by OPEN Alliance [5]. The protocol specifies the mapping of SPI
transfers on Ethernet frames and SPI transfers for configuration data exchange.

Galvanic isolation using cheap capacitors is provided in the base design.

2.3 Technology Choice Discussion
Based on the requirements for the solutions outlined in the section 2.1 and the selected
standards properties, the decision was made to integrate the 10BASE-T1S standard
using the mentioned SPI MAC-PHYs. The Onsemi NCV7410 MAC-PHY chip was
chosen for the implementation and initial testing. The protocol used for the MAC-
PHY SPI transfers is briefly described in 2.6.

The 10BASE-T1S in combination with the SPI MAC-PHYs was chosen due to a very
good overlap with the outlined requirements.

Reliability is achieved through a robust physical layer design [4] and possibly en-
hanced by higher-level protocols from the TCP/IP stack.

Determinism can be achieved by utilizing the PLCA reconciliation scheme.

5

2. Technology Overview and Objectives .
The MAC-PHYs are available at a moderate price, and using SPI as the interface to

the host imposes minimal constraints on the hardware selection for the end device. A
low-cost solution is therefore possible.

MAC-PHYs with multidrop capability will be used.
The MAC-PHYs are available in small FBGA packages, the end devices could be

MCUs also featuring a small package size, and the space requirements for a single
unshielded twisted pair cables are low. This allows the solution to be compact in size.

Finally, ease of integration is addressed by using an Ethernet standard. This allows
standard TCP/IP networking. In many existing systems, Ethernet is used as a network
backbone, and a specialized protocol such as CAN is used on the network edge, where
embedded devices operate. By using 10BASE-T1S, the need for the specialized protocol
disappears, and bridging of two mutually non-coherent standards is not needed. The
ease of integration requirement is further addressed by OS selection (see 2.4).

2.4 Operating System Selection

Upon consideration, it was decided that the Apache NuttX operating system will be
integrated. A solution without an operating system would be possible, but the use of
an operating system has advantages.

One of the most important advantages of using an operating system is the application
code portability. This goes hand-in-hand with the required ease of integration (2.1). If
the end device hardware needs to be changed to a different chip or even architecture,
possibly due to an upgrade or for other reasons, the required change to the application
code should be minimal. Ideally, no change should be required. This is not possible
without the use of an operating system.

Another advantage of using an OS is the possibility to use high-level features such
as priority threading or the TCP/IP stack. These functionalities could, however, be
provided by the respective SDK of the used end device hardware.

2.5 NuttX

NuttX is an open source real-time operating system with a small footprint that focuses
strongly on providing strict standard compliance (POSIX) to support a rich multi-
threaded development environment for deeply embedded processors [6].

Due to the strict adherence to the POSIX standard, NuttX theoretically stretches
the application code portability to all POSIX-compliant targets.

NuttX is implemented in C.

2.5.1 NuttX Configuration

NuttX is a highly modular OS. Components of the OS can be included or excluded
during configuration before NuttX is built. Almost all features of the NuttX operating
system can be configured this way. Be it scheduling algorithms, device drivers, or
support for particular networking protocols. The Kconfig language is used for this
purpose. The process of configuring NuttX before the compilation is referred to as
build configuration.

6

. 2.6 OPEN Alliance 10BASE-T1x MAC-PHY Serial Interface

2.6 OPEN Alliance 10BASE-T1x MAC-PHY Serial
Interface

The selected MAC-PHY uses SPI to interface the host MCU. The OPEN Alliance
10BASE-T1x MAC-PHY Serial Interface (OA) defines the standard capabilities of the
MAC-PHY and the logic of the SPI data transfers between the host and the MAC-PHY
[5].

On top of the standard four-wire SPI interface, the OA defines that one additional
conductor is used to serve as an interrupt signal from the MAC-PHY to the host. As
SPI transfers can only be initiated by the bus master, the interrupt signal is used to
indicate that a special event has occurred, and that the host should use an SPI transfer
to poll status data from the MAC-PHY.

For SPI transfers, the specification defines two subprotocols. One for exchanging
configuration data, the other for the exchange of Ethernet packets. Both are briefly
described in the following text.

2.6.1 Control Transaction Protocol

The Control Transaction Protocol (CTP) allows for configuration data exchange be-
tween the host MCU and the MAC-PHY.

The configuration is done by reading or writing MAC-PHY’s internal registers. The
OA specifies that the registers are addressed by a 4-bit Memory Map Selector (MMS)
value and by a 16-bit offset (ADDR) into the memory bank selected by the MMS.

Each CTP transaction is initiated by the host sending a 32-bit header followed by
variable length data. The header contains MMS, ADDR, write-not-read flag, length,
and other fields. The first bit of the Control Transaction Protocol header distinguishes
the CTP header from the Data Transaction Protocol header (see later).

When the data are being written to the MAC-PHY, the MAC-PHY should, upon
receiving the whole header, echo the header back to the host and then continue echoing
the data sent after the header. By this logic, a layer of verification is added.

If the data are being read from the MAC-PHY, the MAC-PHY should echo the
received header the same way as when writing is done. After the echoed header, the
requested register data is sent to the host. A special protection mechanism can be
enabled, where each register is sent twice – the original register is followed by a ones’
complement version of the original register.

The protocol length field in the header allows the exchange of up to 128 consecutive
32-bit registers in a single transaction.

Figure 2.1. SPI Control Transaction

7

2. Technology Overview and Objectives .
2.6.2 Data Transaction Protocol

The Data Transaction Protocol (DTP) defines the mapping of Ethernet frames on SPI
transfers.

The MCU hardware typically supports a limited number of bytes that can be ex-
changed during one SPI transfer. This number is typically much lower than the typical
length of the standard Ethernet frame, let alone its maximum length of 1500 bytes. For
this reason, the DTP introduces chunks.

The DTP chunk is a fixed-length array containing payload data and a 32-bit control
field. The length of the payload data can be set during configuration. Depending on
the specific MAC-PHY capabilities, lengths of 8, 16, 32, and 64 bytes are possible.

There are two types of chunks. The transmit chunk and the receive chunk. The
transmit chunk is used to pass the data from the host to the MAC-PHY, while the
receive chunk is used in the other direction. The 32-bit control field of the transmit
chunk is at the start of the chunk and is called the header. The control field of the
receive chunk is located at the last 32 bits of the chunk and is called the footer.

Figure 2.2. SPI Chunk Data Transaction

The header consists of fields informing the MAC-PHY whether the host is ready to
receive data in a receive chunk and other fields.

The footer informs the host about the state of the MAC-PHY. The footer contains
information about the minimal amount of available receive data chunks and the minimal
number of transmit chunks that can be currently accepted by the MAC-PHY. Other
fields are also present.

Both the header and footer contain information about whether there is valid transmit
data in the chunk. If the chunk contains the start or the end of the frame, their respec-
tive positions are signaled in the respective control sequence. Both control sequences
also contain the parity bit.

The following figures show the bit layout of the data chunk header and footer. A
more detailed description is provided below. First for the TX header specific fields,
then for the RX footer specific fields. Fields common to both the header and footer are
explained in the last paragraph. For the full reference, see [5].

Figure 2.3. TX Data Chunk Header

The DNC (Data Not Control) bit distinguishes between the control transaction
header and the data header.

8

. 2.7 Testing MAC-PHY Hardware (Onsemi NCV7410)

Through the NORX (No Receive) bit the host indicates to the MAC-PHY that it will
not receive RX chunk in the current transfer, therefore the MAC-PHY should retain
the chunk in its memory.

Figure 2.4. RX Data Chunk Footer

The EXST (Extended Status) bit indicates, that an event has happened that requires
the host’s attention and that cannot be contained in other fields of the header. This
might be an error or other event that the programmer enabled during the configuration
to raise this flag. Upon receiving, the host should use the control protocol to read
appropriate status registers from the MAC-PHY to locate the source of this flag and
possibly to perform a related action.

The HDRB (Header Bad) bit signals, that the MAC-PHY received a header with
wrong parity.

The SYNC (Configuration Synchronized) bit value is tied to a bit in one of the
configuration registers. This bit must be set by the host when the configuration of the
MAC-PHY is complete. The importance of this flag is that it may happen that the
MAC-PHY suffers reset during the operation. This flag gives the host the opportunity
to detect this state and prceed accordingly.

The RCA (Receive Chunks Available) field in the footer indicates the minimal number
of received chunks that are available to be read by the host. Similar to the RCA field is
the TXC (Transmit Credits) field. It indicates the minimal number of transmit chunks
that can be currently sent to the MAC-PHY without incurring the buffer overflow.

The FD (Frame Drop) signals to the host that an error occurred on the physical
layer, and that the currently received Ethernet frame should be dropped by the host.
(Note that this can only happen in the cut-through mode, where the frame is not
stored fully in the MAC-PHY before sending to the host. Otherwise the affected frame
is dropped in the MAC-PHY).

Both the header and the footer contain DV (Data Valid), SV (Start Valid), SWO
(Start Word Offset), EV (End Valid), and EBO (End Byte Offset) fields. These fields
carry the information about the Ethernet frame data possibly present in the rest of the
chunk. More specifically these fields signal whether the frame data are present in the
current chunk, whether there is a start or the end of the frame present in the chunk,
and if so their respective offsets are indicated.

2.7 Testing MAC-PHY Hardware (Onsemi NCV7410)
For testing, the NCV7410 from Onsemi was selected. The NCV7410 is 10BASE–T1S
Ethernet MAC-PHY compliant with the OA protocol supporting the multidrop mode
of operation. Through the courtesy of the manufacturer, a few samples were provided
for this thesis.

9

2. Technology Overview and Objectives .

2.8 Testing Host Device Hardware (ESP32-C6)
For the initial testing the ESP32-C6 chip along with the ESP32-C6 DevkitC develpment
kit was selected.

ESP32–C6 is a low–cost MCU manufactured by Espressif. The chip is driven by a
32-bit Risc-V primary core with up to 160 MHz clock speed and a secondary 32-bit
Risc-V core that can be clocked up to 20 MHz. The main core features 512 kB of
SRAM memory [7].

The chip features various functions and peripherals, for this thesis, mainly the sup-
port for the SPI bus and the NuttX support of the chip are important. During the
implementation of the demonstrator device, the pulse counter peripheral was config-
ured to implement decoding of a quadrature encoder.

10

Chapter 3
NuttX Network Drivers

This chapter introduces the reader to the general concepts in NuttX network drivers.
Different approaches to interfacing the NuttX network stack are discussed. Two data
structures are presented. IOB buffers – means of transporting data throughout NuttX,
and work queues – a mechanism allowing code execution in an independent thread. The
chapter is concluded by a note on implementation of inheritance in the C language.

3.1 A Network Driver

A network driver in an operating system is a piece of software that forms a functional
layer between network hardware and the operating system network stack. Its main
function is to accept incoming data from the networking hardware and pass it to the
OS network stack in a form that the network stack expects, and vice versa – passing
the data from the OS network stack to the networking hardware. Secondary functions
are networking hardware configuration or statistics collection.

In NuttX, network driver usually runs in a dedicated thread, uses a work queue, or
does a combination of both. The network driver is independent of the network stack
in the context of invoking input-output operations. The network stack can turn the
driver ON and OFF, and it can inform the driver about an available TX packet, but
it is the sole responsibility of the driver to call the network stack code to acquire that
TX packet and to pass it to the network device. The situation is the same in the RX
direction. When the driver receives a packet from the network device, it must call the
network stack code to pass the received packet to the network stack. A closer look at
this interface is presented in the following section.

From the standpoint of the OSI model, the network driver lives in its data link layer.

3.2 NuttX Network Stack Interface

NuttX has an in-built network subsystem based on uIP project. The subsystem im-
plements a standard TCP/IP stack and supports both IPv4 and IPv6 protocols. In
order to allow connection between the network stack and network drivers, an interface
is defined.

The interface consists of a network device driver state structure, callback functions,
and other interfacing functions.

3.2.1 Network Device Driver State Structure

The network device driver state structure (net_driver_s) is a structure that defines a
single network interface. It contains information used by the network stack and by the
network driver. The fields closely related to the network driver are the following:

11

3. NuttX Network Drivers .
. d_iob and d_buf – these are two different pointers to the packet data buffer. d_len – length of the packet in the d_buf. d_lltype – type of the data link layer protocol, only Ethernet will be considered. ether – structure containing a representation of the MAC address. callback function pointers – these are described in the following section 3.2.2

The list above mentions two different pointers to the packet data buffer. Currently,
the network stack and new network drivers internally use the IOB data structure for
packet storage. As described in 3.3.2, this approach has several advantages. The pointer
to the IOB buffer is stored in d_iob. The d_buf field is left for backward compatibility
reasons. It points to a flat uint8_t data buffer, possibly the one inside the IOB buffer
pointed to by d_iob. When the IOB buffer is not used, the d_iob field must be left
NULL.

More information such as the IP address of the interface, interface name, configu-
ration flag bits, and statistics is included in the network device driver state structure.
These other fields won’t be discussed as they are more relevant to the network stack
than to the network driver.

3.2.2 Interfacing Callback Functions
The network driver callbacks are functions that should be defined by the network driver.
These functions may then be called asynchronously by the network stack. There are
six callback functions that should be implemented by the driver. The following is a list
of the callback functions with a brief description for each.

. d_ifup – enable the networking hardware. d_ifdown – shut down the networking hardware. d_txavail – a TX packet is ready in the network stack, perform work to obtain it. d_addmac – add the given MAC address to the hardware address filter. d_rmmac – remove the given address from the hardware address filter. d_ioctl – perform an IOCTL procedure

The behavior of the callbacks is not defined too strictly to accommodate the needs of
various hardware devices. Depending on circumstances, implementation of some of the
callbacks can be omitted. For example, some devices might not possess a MAC address
filter; therefore, the implementation of d_addmac and d_rmmac would be pointless. An-
other example would be a design of the driver logic in which the driver periodically
polls the network stack for TX packets. This means the d_txavail function imple-
mentation would be superfluous. In a situation when the implementation of one or
more of the callback functions is not provided, the corresponding function pointers in
the net_driver_s network device driver state structure must be set to NULL during
initialization.

3.2.3 Network Stack Functions
The network stack provides the following functions to the network driver. The full
signature of each function is provided:

. int ipv4_input(struct net_driver_s *dev). int ipv6_input(struct net_driver_s *dev). void arp_input(struct net_driver_s *dev). int devif_poll(struct net_driver_s *dev, devif_poll_callback_t cllbk). void netdev_carrier_on(struct net_driver_s *dev). void netdev_carrier_off(struct net_driver_s *dev)

12

. 3.2 NuttX Network Stack Interface

The above list is not exhaustive; focus was put on functions relevant to the Ethernet
data link layer protocol to align with the main topic of this thesis.

All the functions take a pointer to the net_driver_s network device driver state
structure as an argument.

If the network driver receives an RX frame from the networking hardware, it is sup-
posed to fill a buffer with the appropriate portion of the received frame (see 3.2.4).
When the buffer is filled, d_buf, possibly d_iob (see 3.2.1) is set to point to the buffer.
Depending on the L3 protocol enclosed in the received L2 frame, one of the above
_input functions is called to pass the data to the network stack. In the case of Eth-
ernet, the L3 protocol is determined using the 2 octets long Length/Type field at the
end of the Ethernet header [4]. Upon returning, the _input function might leave an
outbound packet in the net_driver_s structure. This is signaled by the d_len field
being greater than zero. In that case, the network driver should process the packet in
the net_driver_s and send it to the network.

When the network driver is ready to process a TX packet from the network
stack (possibly after a call to the d_txavail callback), the driver should call the
devif_poll function to poll the network stack for TX packets. Apart from a pointer
to the net_driver_s structure, the devif_poll takes one more argument of type
devif_poll_callback_t. This is a pointer to a callback function of the following
definition:

. typedef int (*devif_poll_callback_t)(struct net_driver_s *dev)

The devif_poll traverses all active network connections, and for each of those con-
nections, the callback is called. As the typedef above suggests, the devif_poll passes
a pointer to the net_driver_s structure to the callback. The presence of a valid TX
packet in the buffer pointed to by the net_driver_s buffer pointers is signaled by the
d_len field. If the d_len field is greater than zero upon entering the callback function,
it means a valid TX packet is present in the associated buffer and should be processed
by the network driver. After the callback finishes its work, it should return zero if the
driver is ready to process other TX packets. The devif_poll then continues traversing
the active connections and calling the callback. In the case that the driver is not yet
ready to process another TX packet at the end of the callback, the callback should
return a non-zero value to end the polling. When the driver becomes ready again, a
call to the devif_poll can be issued again.

It is worth noting that when the transmission operation to the network hardware
device is not performed in the body of the devif_poll’s callback and is postponed to
later, the d_iob buffer pointer should be moved to the driver and the d_iob should
be set to NULL. Otherwise, the associated IOB buffer will be freed at the end of the
devif_poll function, possibly causing data corruption. A legacy option is to provide a
valid pointer to a flat buffer in the d_buf field by the driver code. Data is then copied
from a network stack internal IOB buffer to the provided buffer in the body of the
devif_poll function.

3.2.4 Expected format of Data Link Layer Packet

So far, the mechanism of the packet exchange between the network driver and the
network stack has been described. The actual format of the packet passed between the
network stack and the network driver must be mentioned as well.

Generally, the link layer packet format expected by the network stack depends on the
type of the data link layer protocol that the given interface uses. This is determined by

13

3. NuttX Network Drivers .
the d_lltype field in the net_driver_s. In the case of Ethernet, the packet consists of
a 14 octet long Ethernet header and a variable length payload. The header consists of 6
octets of the destination MAC address, 6 octets of the source MAC address, and 2 octets
of Length/Type field as defined in [4]. Some Ethernet frame headers might include a
4 octet tag field before the Length/Type field. This type of Ethernet packet is not
supported, and if received from the networking hardware, it is the driver’s responsibility
to remove the tag from the frame before passing it to the network stack. The payload
data follows after the header. Some networking hardware may include a frame check
sequence (FCS) after the payload data in a received packet. Although a packet with an
appended FCS will be processed correctly (the FCS would be perceived as padding) by
the network stack, the FCS should be stripped off the packet by the driver, as a matter
of good practice.

3.3 IOB Data Structure
Central to the NuttX network driver system is the IOB data structure. IOB stands
for Input Output Buffer. As notable from its name, this structure encapsulates the
data transferred between layers of the NuttX networking system. The data structure
is described in the following text.

The IOB data structure is, in its core, a singly linked list. The structure consists of
successive nodes, where each node contains a pointer to the next node. A single node is
usually called an i/o buffer in the NuttX source code documentation. The entire data
structure is commonly referred to as a buffer chain. I will try to follow this naming
convention for consistency. Apart from the pointer to the next i/o buffer, an i/o buffer
contains the actual buffer – an array of constant length for the data to be stored in.
The length of the data buffer is given by the build configuration and is set to 196 bytes
by default. A single i/o buffer further contains an offset value - how many bytes into
the i/o buffer is the start of the data, and a length value – how many bytes of data are
stored in the entry. All entries also contain the packet length value - this value, however,
is valid only for the head of the buffer chain and tells how many bytes are stored in all
i/o buffers of the buffer chain. In the NuttX network subsystem, one IOB buffer chain
is used to store one packet. NuttX source code includes routines for managing data in
IOB buffers, such as copying data from and into plain buffers. These routines are used
in the driver implementation.

3.3.1 IOB Allocation Mechanism
During the system startup, a pool of free i/o buffers is allocated in a contiguous block
of memory. The number of i/o buffers is determined by build setup options; in my
setup, the number is 36. Initially, all the free nodes are linked together into one chain.
When a NuttX subsystem needs an i/o buffer, an i/o buffer allocation routine is called
from that subsystem. The i/o buffer is then taken from the free list head and passed
as a pointer to the subsystem. When the subsystem no longer needs the i/o buffer, it
calls the i/o buffer free function, and the i/o buffer is returned to the head of the free
list.

3.3.2 Advantages of IOB buffers
Internet packets and other serializable i/o data usually come in a wide range of lengths.
One option to accommodate chunks of data varying in size is to have a set of preallocated
buffers of the same or larger size than the anticipated size of the longest of those chunks.

14

. 3.4 Upper-Half Network Driver

Each buffer is then assigned to a single chunk. The disadvantage of this approach,
especially on memory-constrained systems, is the inefficient use of memory resources
in a case where the system needs to deal with a large number of small chunks. In this
scenario, the system could easily run out of the preallocated buffers, while most of the
memory of the buffers would not be utilized.

The assumption behind IOB buffers is that the data chunk, which needs to be stored
in the buffer, is usually smaller than its maximum possible size. It is therefore conve-
nient to allocate a larger amount of small buffers that can be possibly linked together
to make space for a chunk larger than a single small buffer. With the same amount of
memory, this system provides much more flexibility than the naive solution described
above. In case of dealing with small chunks, a larger number can be accommodated.
When dealing with large chunks, a larger chunk can be accommodated.

Another advantage of IOB buffers is that it facilitates passing data between layers
of the operating system. Before the IOB buffers were introduced to NuttX, data from
network drivers was passed by a pointer to a flat data buffer. This buffer was usually
statically allocated in the driver; therefore, when it was passed to the upper layers,
the network driver must have waited until the buffer was processed (possibly copied)
by the network stack before it could have been used again by the network driver. In
the case of IOB buffers, the pointer to the buffer can be simply passed to the network
stack (enclosed in the net_driver_s structure) and a new IOB buffer can be allocated
immediately. The IOB buffer can then be processed and freed by the network stack
independent of the driver.

3.4 Upper-Half Network Driver
In order to simplify interfacing with the network stack as previously described (3.2),
another layer is present in NuttX. This layer lies between the network stack and the
network device specific driver. In this setup, the part of the driver responsible for
handling the device-specific logic is called the lower-half driver. The part responsible for
interfacing with the network stack is called the upper-half driver. The upper-half driver
takes care of IOB buffer management, statistics collection, and hides the intricacies of
the net_driver_s structure from the programmer. As for the means of code execution
of the upper-half driver code, the upper-half driver can be configured to either use the
system-wide work queue or a dedicated thread. The driver implemented as part of this
work relies on the upper-half network driver.

In a way, the interface between the lower and the upper drivers is very similar to the
interface between a full driver and the network stack. Callback functions ifup, ifdown,
addmac, rmmac, and ioctl are present in this interface as well, and the functionality is
the same as before. The upper-half driver merely passes the respective calls from the
network stack to the lower-half driver logic. Minimal intermediate action is performed.

What is different in the upper-half driver interface is the way the network packets are
exchanged. The upper-half driver relies solely on IOB buffers for the data exchange.
For packet transmission, the interface defines a simple callback.

. int (*transmit)(struct netdev_lowerhalf_s *dev, netpkt_t *pkt)

This callback function replaces the potentially complex polling as described in 3.2. The
netpkt_t (netpacket) type in the second argument is used in the upper-half – lower-
half logic to encapsulate one network packet. The netpk_t is summarized in 3.4.1. The
netdev_lowerhalf_s is briefly discussed in 3.4.2.

15

3. NuttX Network Drivers .
When the callback is invoked, the lower-half driver has the opportunity to accept

the packet and to take possession of it along with the responsibility of sending it to the
network and freeing it later. The lower-half can also decline the packet by returning a
negated error code such as -EAGAIN.

When a network packet is done transmitting to the network hardware, the
lower-half driver may inform the upper-half driver about this event by calling the
netdev_lower_txdone function. The upper-half driver is woken up and possibly
passes new data to the lower-half.

When a network packet is received from the network hardware, the lower-
half driver may inform the upper-half driver about this event by calling the
netdev_lower_rxready function. The upper-half driver then invokes the follow-
ing lower-half driver callback.

. netpkt_t *(*receive)(struct netdev_lowerhalf_s *dev)

Similarly to the transmit callback, but in the opposite regard, this callback should
pass ownership of the received netpacket from the lower-half to the upper-half network
driver. If no such packet is ready, NULL can be safely returned. Upon passing the
received packet to the upper-half driver, the upper-half driver dispatches the packet to
the respective _input function based on the registered network hardware device type
(e.g. Ethernet, Bluetooth, CAN) and the packet header.

At the expense of lower flexibility, a more concise interface is provided. Utiliza-
tion of the upper-half network driver is currently the community-preferred approach to
implementing network drivers for NuttX.

3.4.1 Netpackets

Netpackets are used to exchange network packets between the upper-half and the lower-
half drivers. They are represented by the netpkt_t data type. The netpkt_t type is
identical to the iob_s IOB buffer structure (see 3.3). A thin layer of abstraction
above IOBs has been built as part of the upper-half – lower-half logic. The purpose
of the netpkt_t is to clearly distinguish namespaces. Also, if it is later decided that
netpackets should use a different underlying data structure than the iob_s, no lower-
half driver honoring the interface needs to be changed provided that the netpacket
interface remains the same.

The following is a selection of functions from the netpacket interface.

. netpkt_t *netpkt_alloc(struct netdev_lowerhalf_s *dev,
enum netpkt_type_e type). void netpkt_free(struct netdev_lowerhalf_s *dev, netpkt_t *pkt,

enum netpkt_type_e type). int netpkt_copyout(struct netdev_lowerhalf_s *dev, uint8_t *dest,
const netpkt_t *pkt, unsigned int len, int offset). int netpkt_copyin(struct netdev_lowerhalf_s *dev, netpkt_t *pkt,

const uint8_t *src, unsigned int len, int offset). unsigned int netpkt_getdatalen(struct netdev_lowerhalf_s *dev,
netpkt_t *pkt)

The netpkt_alloc allocates a buffer from the list of free buffers if possible. If the
allocation is successful, respective quota are decreased (3.4.2). The netpkt_type_e
enum distinguishes between the TX and the RX buffer.

The netpkt_free frees a previously allocated buffer. Quota are increased.

16

. 3.4 Upper-Half Network Driver

The netpkt_copyout is used to copy len bytes of data at offset from the netpacket
into a flat buffer.

The netpkt_copyin is used to copy len bytes of data from a flat buffer into the
netpacket at offset.

The netpkt_getdatalen returns the number of bytes stored inside the buffer.
The netpkt_setdatalen sets the length of data inside the buffer. This doesn’t need

to be used if the netpkt_copyin function is used to fill that netpacket with data, but
the function can also serve to strip excess data from the end of the netpacket.

The figure 3.1 presents a high-level view of layers of the NuttX network system along
with buffer data structures for the data exchange between the layers. The SPI interface
is added as it is relevant to the driver implemented in this work.

Application

Network Stack

Upper-Half Driver

Lower-Half Driver

SPI Interface

iob_s *

uint8_t *

uint8_t

netpkt_t *

uint8_t *

uint8_t

Figure 3.1. NuttX Network System Layers

3.4.2 Lower-Half specific data

The lower-half specific data are stored in the netdev_lowerhalf_s structure. This
structure is used to define a single lower-half driver. It contains very little additional
information on top of the net_driver_s structure. Apart from the net_driver_s
structure, it encapsulates callback functions described above and netpacket quota –
predefined maximum numbers of TX and RX netpacket buffers that can be held by
the driver. By the mechanism described in the section about inheritance (3.6), the
netdev_lowerhalf_s can be extended to contain data specific to the particular driver.

17

3. NuttX Network Drivers .

3.5 Work Queue
A work queue is a mechanism that, in its basic form, allows asynchronously executing
blocks of code in a first-come, first-served manner. In NuttX, work queue is often
utilized in network drivers. The main advantage of a work queue is its simplicity of use
in comparison with setting up a dedicated thread.

3.5.1 Executing Code in NuttX Work Queues

A work scheduled to be executed in the work queue is defined by its state structure.
Before first use, this structure needs to be initialized to all zeros, but after that, it is
completely managed by the work queue logic. When a work needs to be scheduled into
a work queue, a call to the work_queue function must be issued. This function takes
an id of a work queue, a pointer to the work state structure, a pointer to a callback
function to be executed, and a minimum delay to wait before execution. The work
queue id selects one of the work queues present in the system.

3.5.2 Work Queue Drawbacks

Work queues must be used with caution, as there is a range of pitfalls to be aware of.
One such pitfall is that the work queue interface can be used by unrelated parts

of the operating system. This might lead to deadlocks [8]. Let’s say one part of the
system holds an IOB buffer and the code to free the buffer is executed through the work
queue. The second part of the system needs to allocate a buffer and uses a blocking
IOB allocation function in a body of its work queue worker. If there are no other free
buffers available, the work queue is in a state of deadlock. The buffer cannot be released
by the first part of the system because it is waiting for the worker of the second part
of the system to finish. The second worker cannot finish because it is waiting for the
IOB buffer.

This problem could be eliminated by configuring NuttX to use multiple threads to run
the work queue (CONFIG_SCHED_LPNTHREADS). The problem with deadlocks is solved,
but other problems may arise from the fact that the jobs scheduled in the work queue
are now not guaranteed to run sequentially but can be executed in parallel.

Another solution might be to create a dedicated work queue solely for the network
driver.

Both of these solutions, of course, increase the memory footprint of the OS.
Only short callback functions should be scheduled in the work queue; otherwise, jitter

may be increased in the system.
As a conclusion, if not done properly, work queues usage might cause the system’s

real-time properties to deteriorate or even result in a deadlock.

3.6 Inheritance in C
Drivers in NuttX often employ the upper-half – lower-half paradigm. The upper-half
driver typically implements logic that is common to a certain class of devices (e.g.
pressure sensors, network devices). The lower-half then provides support for a single
device type of the class (e.g. BMP180, NCV7410). As described in section 3.4, the
network drivers are no different.

In programming, in order to provide a common interface to a higher-level logic, while
allowing flexibility by extension at the lower level, inheritance is commonly used.

18

. 3.6 Inheritance in C

Even though the C language does not feature explicit support for inheritance, 1 the
principle of inheritance can be achieved by using the following technique. The concept
is shown schematically in an example from NuttX.

First, the parent struct is defined.

struct netdev_lowerhalf_s
{

const struct netdev_ops_s *ops; /* reference to the callbacks */
...
struct net_driver_s netdev; /* interface to the net stack */

};

When the parent is defined, the child structure can be defined as a structure with
the first field being the instance of the parent structure. Arbitrary other fields can (but
do not need to) be defined.

struct ncv7410_driver_s
{

struct netdev_lowerhalf_s dev;

struct spi_dev_s *spi; /* SPI interface */
...

};

When the reference to the child structure needs to be passed to the parent logic,
which is not aware of the child’s type, the parent structure field is simply passed. As
described in 4.3, in NuttX, this is done during the driver registration.

netdev_lower_register(&priv->dev, ...);

In the above snippet, the priv argument is a pointer to an instance of the
ncv7410_driver_s structure, allocated and initialized beforehand by the child’s
logic.

When the parent invokes one of the interfacing callbacks to pass execution to the
child’s logic, the reference provided before by the child (registration above) is passed as
an argument. This argument is then simply retyped back to the child’s structure type.

static int ncv7410_ifup(struct netdev_lowerhalf_s *dev)
{

struct ncv7410_driver_s *priv = (struct ncv7410_driver_s *) dev;
...

This mechanism is allowed due to the fact that the C language guarantees that a
pointer to a structure object points to its initial member, and vice versa [9].

As a note aside, the parent structure from the above example could be considered an
abstract type, as the child must implement the interfacing functions in order to be used
in any meaningful way. By the definition provided in [10], the abstract type cannot
be instantiated. In C, the netdev_lowerhalf_s can be of course instantiated, but the
meaning of such instantiation with no supporting logic would be questionable.

1 NuttX enforces the C89 definition of C

19

Chapter 4
NCV7410 Network Driver Implementation

This chapter aims to describe the implementation steps of the NuttX network driver
for the NCV7410 MAC-PHY.

To be able to use the driver on a host MCU, support must be provided on two levels.
First, a general driver must be implemented. This driver is hardware-agnostic. When
such driver is implemented, supporting hardware-specific code must be provided in the
so-called board support package (BSP) in order to support the specific host hardware
used. This low-level code initializes needed peripherals on the host board/chip level.
In the case of this work, those peripherals are the SPI bus and the GPIO interrupt.
The following text is focused mainly on the host MCU-agnostic part of the code. The
section 4.3.1 is dedicated to the hardware-specific initialization.

The upper-half – lower-half driver paradigm was used (see 3.4) to implement the
driver. The implemented driver is therefore a lower-half driver. Depending on context,
notation driver will be used to denote the lower-half driver or a full-driver as a working
unit comprising the upper-half and the lower-half driver.

4.1 Driver Specific Data
The inheritance mechanism described in 3.6 is used to define driver-specific data on top
of the data in the netdev_lowerhalf_s structure. The structure ncv7410_driver_s
is created.

The ncv7410_driver_s contains the following additional fields.
A mutex for protecting the driver from data races (more in 4.8). mutex_t mutex

A pointer to the hardware-agnostic structure to operate the SPI periphery (4.3.1). struct spi_dev_s *spi

Two work_s instances for the work queue interface:. struct work_s interrupt_work – interrupt handling (4.7). struct work_s io_work – data exchange (4.6)
Current state of operation – can be one of NCV_RESET, NCV_INIT_DOWN, NCV_INIT_UP. uint8_t ifstate

Two fields indicating the current state of NCV7410’s data buffers. int txc – number of chunks that can be currently written to the MAC-PHY. int rca – number of chunks that are available to be read from the MAC-PHY
Pointers to TX and RX IOBs along with four accompanying fields (described in 4.6). netpkt_t *tx_pkt. netpkt_t *rx_pkt. int tx_pkt_idx. int rx_pkt_idx. int tx_pkt_len. bool rx_pkt_ready

20

. 4.2 Configuration Exchange Primitives

4.2 Configuration Exchange Primitives
It was mentioned before that the OA defines a protocol for exchanging configuration
data between the host MCU and the MAC-PHY (see 2.6.1). Apart from this, the OA
defines memory regions present in the MAC-PHY device. Each such region is identified
by its MMS number. When reading or writing a MAC-PHY register, the MMS and the
address (ADDR) of the register in the region are placed in the control header. These
two fields uniquely identify a single register in the MAC-PHY.

To provide a configuration interface to the MAC-PHY registers for the driver logic,
the three following functions are defined.

. static int ncv_write_reg(struct ncv7410_driver_s *priv,
oa_regid_t regid, uint32_t word). static int ncv_read_reg(struct ncv7410_driver_s *priv,
oa_regid_t regid, uint32_t *word). static int ncv_set_clear_bits(struct ncv7410_driver_s *priv,

oa_regid_t regid,
uint32_t setbits, uint32_t clearbits)

All three functions modify a single register on the MAC-PHY. The first two functions
write/read into/from the register from/into the word argument. The third function
performs a read-modify-write operation on behalf of the caller. The register is first
read, its contents are then OR’d with the setbits argument and AND’d with the one’s
complement of the clearbits argument. The resulting value is then written back to
the MAC-PHY.

The destination/source register is identified by the regid argument of the type
oa_regid_t. This type is defined in the accompanying header file of the driver. Under
the hood, this type is a 32-bit number that encapsulates MMS and ADDR values for a
particular register. Macros for oa_regid_t construction from MMS and ADDR as well
as macros for the MMS and ADDR extraction from the oa_regid_t type are defined.

The OA specifies that some MMS-defined memory regions are common among all OA
MAC-PHYs, while other regions are vendor-specific. With this, and plans for future
logic generalization in mind, the macros with address declarations were defined. For
every MAC-PHY register that needs to be accessed by the driver logic, a set of macros
in the accompanying header file is defined. Every such register has a defined macro
for its MMS, ADDR and REGID (of the oa_regid_t type). If any subfields or flags
of the register are used, then there is a macro defining the respective position and
the mask of the subfield or flag. The general format for the naming of the macros is
OA_<regname>_<suffix> for the register residing in the OA-generic memory regions,
where the <suffix> is either MMS, ADDR, REGID or the name of a subfield or flag. The
format <prefix>_<regname>_<suffix> is used for the vendor-specific registers. At this
stage, the <prefix> is always NCV as there are no other OA devices supported other
than the NCV7410. The <suffix> is used the same way as for the OA-generic registers.
The OA generic macros were named to reflect naming in the OA specification [5]. The
naming for the NCV7410-specific macros is taken from the NCV7410 datasheet [11].

4.3 Driver Initialization
Before the driver can be used, it first needs to be initialized and registered with the
operating system. Whether the driver will be initialized or not is configured in the build

21

4. NCV7410 Network Driver Implementation .
configuration. The following sections describe the driver initialization in chronological
order.

4.3.1 Board-Specific Initialization
The MCU hardware first needs to be initialized in order to be able to interface with the
MAC-PHY. The driver initialization therefore begins during the board initialization.
During the boot of NuttX the board_late_initialize function is called by the OS.
This function passes execution to the board-specific logic implemented in the BSP. The
flow of execution is dispatched to the esp_bringup function (in the case of ESP32-C6
board). In this function, a call to start the NCV7410 driver is invoked. This is done
by calling the board_ncv7410_initialize function.

In the board_ncv7410_initialize function, the SPI interface and the GPIO pin
used for the interrupt signal are initialized. A pointer to the SPI interface along with
the interrupt pin IRQ number are passed to the general driver logic in a call to the
ncv7410_initialize function. As there is presently no universal mechanism for the
general driver logic to control a GPIO pin, the hardware interrupt of the interrupt pin
must be enabled by the board-specific logic after the ncv7410_initialize returns.

4.3.2 General Driver Initialization
In the ncv7410_initialize function, the memory for the ncv7410_driver_s is allo-
cated by a call to the kmm_zalloc function. The spi field is initialized using the pointer
to the SPI interface passed from the board-specific logic. The driver is now able to use
the configuration exchange primitives (4.2) to configure the MAC-PHY. A reset to the
MAC-PHY is issued. If successful, the driver status ifstate field is set to NCV_RESET.
The factory-assigned MAC address is read from the MAC-PHY and copied into the re-
spective field in the net_driver_s structure residing inside of the netdev_lowerhalf_s
dev field. The ncv_interrupt (see 4.7) function is attached to the IRQ number passed
from the board-specific logic. The mutex is initialized. The packet quotas are set to
the predefined values. The lower-half function callback pointers are initialized by the
pointers to the respective functions. The netdev_lower_register function is called.
By this, the operating system is informed about the driver and can take needed steps.

4.3.3 Configuring the MAC-PHY
The MAC-PHY is configured by the first call to the ncv7410_ifup function. This
usually happens right after boot. A configuration very similar to the one found in the
datasheet [11] is used. The setup of the OA protocol and the MAC address filtering are
mentioned in the following sections. After the successful configuration, the ifup field
in the driver specific structure is set to NCV_INIT_UP and is ready to exchange data
packets with the network.

4.3.4 OA Protocol Setup
The OA protocol is set up during the MAC-PHY configuration. The setting is the
following. If the RX chunk contains a start of a frame, then the start of the frame
is always placed at the start of the chunk. This could be disabled to allow for more
efficient transfers, but the driver logic would need to be modified. The RX cut-through
mode is enabled. In this mode, the MAC-PHY does not collect the whole received
Ethernet packet before sending to the host. Rather it sends the chunks to the host as
the data come. This leads to a slight decrease in latency. On the other hand, the driver
logic needs to be enhanced by logic to drop the packet when the Frame Drop (FD) flag

22

. 4.4 Switching the Interface On and Off

is found in the data chunk footer (see 2.6.2). Lastly, default chunk payload size is set
to 64 bytes. This makes the total length of the data chunk 68 bytes long.

Note that the cut-through mode is disabled in the TX direction as the host cannot
guarantee to feed data to the MAC-PHY fast enough. During the transmission of
packets longer than a couple of chunks, the TX buffer underflow error happens on the
MAC-PHY.

4.3.5 MAC Address Filtering
By default, the MAC-PHY passes all the Ethernet packets received on the common
segment regardless of the target MAC address field. On segments with more than two
hosts, this would decrease the performance of the hosts by having to deal with packets
that are not addressed to them. To remove this problem, a MAC address filter is present
in the MAC-PHY’s hardware. This filter needs to be configured. The NCV7410 features
four MAC address filter slots. Each slot consists of an address field and a mask field.
To the address field, the address that should be allowed to pass through the filter is
filled. The mask field defines which bit positions in the address field must match, and
which bit positions are not checked by the filter.

In normal operation, a single filter slot is used to store the factory-assigned MAC
address of the device mentioned in the previous steps. Note that during the build
configuration, the promiscuous mode can be selected in which the filtering is disabled.
The host then can be used, for example, for network eavesdropping.

4.4 Switching the Interface On and Off
The driver interface defines the ifup and ifdown functions. These functions can be
called by the network stack at any time to cause the interface to shut down if currently
up, or to turn on if currently down. In the NuttX shell, the user can call the ifup or
the ifdown commands to invoke the function of the corresponding name.

The implementation in the NCV7410 driver logic of the functions is following. The
ifdown function first cancels all driver specific tasks that may be scheduled in the
work queue. This is done by calling the work_cancel function twice. Once with
a pointer to the interrupt_work, once with a pointer to the io_work – both fields
of the ncv7410_driver_s. After this, the MAC-PHY is disabled. This is done by
modifying the respective MAC-PHY registers through the Control Transaction Protocol
(2.6.1) using the ncv_set_clear_bits utility function (4.2). After this step, the state
of the driver buffers is reset to the state after the driver first initialization. All the
ongoing transactions are dropped by this. As the last step, the ifstate field in the
ncv7410_driver_s is set to NCV_INIT_DOWN. The ifdown function then returns.

The ifup function is similar to the ifdown function. Due to the fact that the ifdown
is responsible for resetting the driver buffers, the ifup function is freed from this task.
On the other hand, the ifup function checks the ifstate field and if NCV_RESET is
found, the ifup function is obligated to call the MAC-PHY configuration routines. If
those routines finish successfully, the ifstate is set to NCV_INIT_DOWN state.

4.5 Asynchronous Code Execution
Some device drivers are implemented in a way that all routines are executed syn-
chronously in the body of the data-gathering callback function. Others need to com-
municate with the device hardware more frequently than the callback functions are

23

4. NCV7410 Network Driver Implementation .
being called – some of their code, therefore, needs to run asynchronously, independent
of the rest of the system. The case of network drivers lies predominantly in the latter
category. Several options for the asynchronous execution exist.

One option would be to accommodate all asynchronous work into the interrupt service
routine (ISR) assigned to the MAC-PHY interrupt signal. This approach is highly
problematic due to several reasons. The ISR would need to handle SPI transfers.
However, the SPI interface as currently provided by NuttX does not support invocation
from the ISR context. Other hardware-related problems may arise. Also, this approach
doesn’t account for transmitting data. Data transmission executed in the transmit
callback would therefore block the upper-half driver at least for the duration needed to
transmit the entire packet being transmitted. This might negatively affect performance.

Other option would be to run all the asynchronous code inside a dedicated kernel
thread. This option allows the most flexibility. Additionally, a priority value can be
set for a kernel thread. On the other hand, kernel thread introduces increased memory
footprint and a notable implementation overhead.

Simpler than using a dedicated thread, while retaining the demanded core function-
ality of asynchronous code execution, is using the system-wide work_queue (see 3.5)
for running the asynchronous code. This approach was used in this work.

4.6 Buffer Management and Data Exchange
In order to be able to pass data between the upper-half driver and the network de-
vice, the driver needs some intermediary storage. This is provided by using netpackets
(3.4.1).

The pointers to netpackets are stored in the tx_pkt and the rx_pkt fields of the
ncv7410_driver_s structure.

The way the buffers are used to exchange data and how they are allocated is described
in the following text.

4.6.1 Transmitting Data
When the TX packet is accepted from the upper-half, the tx_pkt_idx is set to zero,
and the tx_pkt_len is set to the value returned by the netpkt_getdatalen function.
Subsequently, the data is fed to the MAC-PHY using the SPI Data Transaction Protocol
(2.6.2). The netpkt_copyout function is used to copy the data to a flat buffer for
the SPI transfer in a chunk-by-chunk manner. The tx_pkt_idx is used as the offset
argument to the netpkt_copyout function, increasing by the chunk payload size with
each chunk sent.

When the tx_pkt_idx reaches the value of tx_pkt_len, the packet is considered
to be sent, the netpacket is freed, and the netdev_lower_txdone function is called to
inform the upper-half.

4.6.2 Receiving Data
If the receive chunk footer signals the presence of the start of a frame inside the chunk,
the rx_pkt_idx is set to zero. Similarly to the data transmission, the data from the
subsequent chunks with valid receive data are then copied into the RX netpacket using
the netpkt_copyin function with the rx_pkt_idx as an argument.

When the receive chunk footer signals the end of the frame, the frame data remaining
in the last chunk is copied to the netpacket. The last 4 bytes containing the FCS are
then stripped from the netpacket using the netpkt_setdatalen function. Before calling

24

. 4.6 Buffer Management and Data Exchange

the netdev_lower_rxready function, the rx_pkt_ready flag is set. This flag indicates
to the rest of the logic of the driver that this netpacket is not available for writing.

After calling the netdev_lower_rxready, the RX netpacket must wait inside the
lower-half driver until the receive callback is called. When that happens, the rx_pkt
is set to NULL (after saving to a temporary variable), the rx_pkt_ready is set to false,
and the netpacket is passed (from the temporary variable) to the upper-half. The
upper-half driver is responsible for freeing the RX packet.

4.6.3 I/O Work

The logic described above is solely (apart from the callback functions) executed by a
single function in the work queue. The name of the worker function is ncv_io_work
and it encapsulates all the subroutines needed for the data exchange according to the
OA protocol. The worker presents itself to the work queue interface using the io_work
work_s instance in the lower-half driver structure.

To limit the time spent in the work queue (see 3.5.2), the ncv_io_work function
always exchanges exactly one chunk over the SPI.

First the chunk exchange is prepared. The header is set accordingly to the current
state of buffers, and transmit data is possibly copied from the TX netpacket to the TX
buffer for the SPI exchange.

After the preparation step, the SPI transfer is performed. If the transmission of a
full packet is finished, the according steps are taken (4.6.1).

The incoming buffer is decoded, RX data are possibly copied to the RX netpacket.
As the last step, the ncv_io_work function checks whether another TX/RX transfer

is possible. If so, the next run of the ncv_io_work is scheduled using the work queue.

4.6.4 Netpacket Allocation

In the case of TX packets, the netpacket allocation does not need to be addressed by
the lower-half driver at all. The upper-half driver is completely responsible for the TX
packet allocation.

In the case of RX packets, the netpacket allocation must be done by the lower-
half driver. In each run of the data exchange function, the ncv_can_rx is called. This
function is used to tell the calling function whether it should set the No Receive (NORX)
flag in the chunk header or not. As part of its simple logic, the RX packet allocation is
addressed. The function first checks if there is data to be read, i.e. whether the rca field
in the lower-half structure is greater than zero. If not, the RX netpacket does not need
to be allocated. Then the function checks the rx_pkt_ready flag. If the rx_pkt_ready
is true, the netpacket cannot be touched, and the function returns false. Continuing,
if there is a netpacket already allocated, the function returns true. Finally, if no packet
is allocated, the function tries to allocate the RX packet. The function then returns
true if the allocation was successful. Otherwise, false is returned.

4.6.5 Quota Considerations

Quotas of the network driver are a concept that is part of the upper-half – lower-half
network driver logic. It represents numbers of TX and RX netpackets, that can be
allocated simultaneously by the full-driver. In accordance with the driver logic and
due to the following considerations, the quota number for the TX netpackets is set to
1. The quota number for the RX netpackets is set to 2 (the second netpacket can be
allocated after the currently received netpacket is passed to the upper-half).

25

4. NCV7410 Network Driver Implementation .
Due to the fact that the NCV7410 MAC-PHY’s TX and RX buffers both feature 4 kB

of space, it was decided that it is enough for the driver to operate only one TX and one
RX buffer. It is relied upon the MAC-PHY buffers to accommodate the incoming data
during the time when the packet is in the rx_pkt_ready state. This is between the frame
reception being signaled to the upper-half driver by calling the netdev_lower_rxready
and the upper-half accepting the data using the receive callback.

The previous is, in fact, only important in the RX direction. If it is later found
that the mentioned premise is unreliable, the rx_pkt pointer will be replaced by a
fixed-length statically allocated array of netpk_t pointers. The same will be done with
rx_pkt_idx and rx_pkt_ready. An index to the new arrays denoting the active packet
will be allocated, and the active packet selection logic will be implemented.

Possibly a better workaround would be using the IOB queue – an IOB buffer FIFO
queue present in NuttX. However, this feature is not yet integrated with the upper-
half’s neptk_t. Even though the netpkt_t type is identical to the iob_s structure, the
abstraction built by the upper-half logic would be ideologically disturbed.

4.7 Interrupt Handling
As mentioned before, an interrupt signal may be sent from the MAC-PHY to the host.

Due to steps taken during the initialization, the assertion of the interrupt signal is
dispatched to the ncv_interrupt ISR function. The ncv_interrupt is designed to be
as short as possible. Therefore, it only schedules execution of the ncv_interrupt_work.
The ncv_interrupt_work might be called an interrupt task in some operating systems,
but the ncv_interrupt_work is executed using the work queue. The notation interrupt
worker might be therefore preferable. The interrupt worker is represented to the work
queue interface by the interrupt_work field in the lower-half driver structure.

As suggested in [5], the interrupt worker first polls the receive chunk footer from the
MAC-PHY. This is done by setting the No Receive (NORX) flag and clearing the Data
Valid (DV) flag in the transmit chunk header.

At this point the Extended Status (EXST) flag should be checked and the possi-
ble source of its assertion should be determined. However, at this stage, this is not
implemented.

The txc and rxa fields are updated based on the values in the corresponding fields
of the footer. As the last step, the interrupt worker checks if the data can be exchanged
with the MAC-PHY according to the updated txc and rxa and the state of netpacket
buffers. If so, the interrupt worker schedules execution of the ncv_io_work function
using the work queue.

4.8 Thread Synchronization
During normal operation, up to four threads may be trying to access the network
driver specific structure. To prevent problems caused by different threads modifying
the structure in an unpredictable way, atomicity (from the thread perspective) of parts
of the code is enforced by using the mutex lock.

NuttX work queues can be configured to use multiple threads for the execution of the
scheduled tasks during the build configuration. The sequential execution is therefore
not guaranteed by the work queue in the general case. Without this option, the number
of threads concurrently accessing the driver structure would be lower than the number
mentioned above, but still greater than one.

26

. 4.8 Thread Synchronization

For illustration, the mentioned four threads would be the interrupt worker, io worker
– both invoked by the multi-threaded work queue, the upper-half calling receive or
transmit and the network stack calling ifdown, addmac or rmmac.

In order to protect the data from race conditions, relevant parts of code in functions
ncv_interrupt_work, ncv_io_work, transmit, receive, and ifdown were wrapped
inside the nxmutex_lock – nxmutex_unlock pair.

Additionally, upon locking the mutex, the locking thread always checks the ifstate
value for the correct state in the current context. This prevents invalid operations, such
as the io worker trying to perform data exchange after the MAC-PHY has been shut
down.

The wrapped code in the ncv_interrupt_work, ncv_io_work, and the ifdown func-
tions includes SPI transfers. This might evoke a feeling of decreased performance.
However, it is shown that the performance penalty incurred is minimal. All the func-
tions in the set of wrapped functions may be blocked by an SPI transfer. When any
of the functions with an SPI transfer is blocking another such function, there is no
way of improving performance as the access to the SPI interface is inherently exclu-
sive. When any function is blocked by the ifdown function, the performance is not
a concern at all, as the interface is shutting down. When the transmit or receive
functions are blocked, no performance penalty is applied. These functions only modify
the driver-specific struct to make a request for data exchange that, in the end, needs
to be processed by the ncv_io_work function.

Only concern might be the blocking of the work queue by an SPI transfer as it
may increase the latency of the work queue. However, this cannot be mitigated by
better synchronization. If the multi-threaded work queue configuration is used along
with DMA SPI transfers, the work queue can wake up another thread and continue
execution there while the SPI transfer is in progress. Note that during the DMA SPI
transfer, the execution is blocked by waiting on a semaphore. The semaphore gets
released after the transfer is done.

27

Chapter 5
System Evaluation and Testing

This chapter presents methods that were used for the evaluation and testing of the
implemented system. To provide a quantitative estimate of the system latency and
throughput, ping and iperf utilities were used, respectively. Other techniques for
testing are mentioned. The process of evaluation and testing was facilitated by the
use of special hardware – the EVBUM2876, a 10BASE-T1S equipped USB-C external
network interface compatible with a regular PC. For verification of the properties of the
implemented system in a real-world application, a simple drive-by-wire demonstrator
was created.

As a result of testing under load and in various configurations, several bugs were
found in the code and fixed.

5.1 Performance Evaluation

This section describes how the performance of the system introduced in past chapters
was evaluated. Focus is mainly put on the data throughput and latency of the system.

5.1.1 Network Utilities

For measuring the system qualities, the iperf and ping utilities were used.
To measure the throughput of the system, the iperf utility was used. The iperf

utility is based on the server-client model. One host poses as the server in the model, the
other as the client. When the client connects to the server, data is sent in one direction
from the client to the server. The throughput of the data is measured. The iperf utility
offers two basic modes of operation – the UDP mode and the TCP mode. According to
the protocol selected, the exchanged data is passed using one of the selected protocols.

For latency measurements, the ping utility was used. The ping utility works on top
of the ICMP protocol. For the ICMP echo request message addressed to a certain
host in the network, the ICMP echo reply message is expected back from the host.
Apart from information about reachability, the round-trip time (RTT) statistics can be
acquired by the ping utility. The ping utility has also been used in order to introduce
artificial traffic into the network. The -f (flood) option of the ping utility was used for
this purpose.

5.1.2 Testing Network

For the evaluation of the system, a small network comprising three host devices has
been assembled. Two devices are the ESP32-C6 hosts. The third end device is a PC.
The schematic representation of the testing network is in the figure 5.1. As seen in the
figure, all interfaces feature 2 connectors. Note that both connectors of each device are
directly electrically connected.

28

. 5.2 Testing

10BASE-T1S
Dongle

MAC-PHY

ESP32-C6

MAC-PHY

ESP32-C6

Figure 5.1. Schematic Representation of the Testing Network

5.1.3 Evaluation Scenarios and Results
The following scenarios were tested. The verbatim output of the utilities can be found
in the appendix A.

. The ping (ICMP, 56 bytes of payload) response latency between the PC host and
one of the ESP32-C6 hosts.. Average latency of 0.797 ms was measured, 3.784 ms maximum.. TCP and UDP data throughput between two ESP32-C6 hosts and no additional
traffic.. 3.06 Mbits/sec reached by the TCP, 5.09 Mbits/sec by the UDP.. TCP and UDP data throughput between two ESP32-C6 hosts with added artificial
traffic by the PC host flooding one of the ESP32-C6 hosts with ping, the ping latency
was also measured.. 2.90 Mbits/sec reached by the TCP, 4.67 Mbits/sec by the UDP.. For TCP, the PC host measured the average RTT of 1.294 ms, 5.094 ms maximum.. For UDP, the PC host measured the average RTT of 1.830 ms, 4.349 ms maximum.

From the measured data, one clear observation can be made. When more traffic is
introduced to the network, the latency rises, while the throughput declines. Setting
of the PLCA in the network could lessen the negative impact of the added traffic. As
mentioned in 6, implementation of this feature is planned.

Note that the data throughput and latency can be influenced by various aspects.
The measured numbers are provided more as guidance to make an approximate assess-
ment about the system properties and to provide a comparison between cases with and
without artificial traffic, rather than presenting them as a definitive benchmark.

Various values for the size of packets were tested by the ping utility. Setting the size
of the packet to an arbitrary size in the range defined for the standard Ethernet frame
did not result in losing any packets.

5.2 Testing
This section briefly mentions other techniques used for testing.

In order to verify the proper function of the MAC address filter setting in the MAC-
PHY, the arping tool was used. This tool is able to send ARP and IP pings to the

29

5. System Evaluation and Testing .
specified host. During testing, it was used to send an IP ping similarly to the ping
utility. In arping, however, the data link layer (MAC) address of the target host can
be modified. The option -t is used for this purpose. Arpings were sent with the MAC-
PHY’s MAC address and with some other address. Then it was observed whether the
requests with the correct address are passed to the MCU, and if the wrong requests
are filtered by the MAC-PHY. Note that a similar test can be done without needing a
special utility in a network with three or more nodes. However, at this stage, only two
interfaces were available to us.

The driver code was carefully analyzed during the testing. A problematic time win-
dow was located, where, due to a bug in thread synchronization, a certain thread race
condition could theoretically cause the driver to crash. The time window was too short
for the probable vulnerability manifestation. The time window was therefore artifi-
cially inflated by adding a busy delay implemented as a for-cycle. The presence of the
vulnerability was verified, and the bug was fixed.

The Wireshark software was used in various stages of implementation and testing.

5.3 Demonstrator Device
As an example of a real-world application, a simple drive-by-wire system was created.
The system consists of two hosts. Both of the hosts are equipped with a small DC
motor with a quadrature encoder sensor. The quadrature encoder sensor is supported
by NuttX. Reading the position is therefore simplified to a mere call to an ioctl
function on an open file descriptor of the registered quadrature encoder sensor driver.
The motors are controlled using an H-bridge module via the combination of GPIO and
PWM signals. The setting of the GPIO and PWM is done through the same mechanism
as the quadrature encoder position is being read.

From the two devices in the network, one device is the controller, the second device is
the controlled. The controller’s motor is used only as the source of the position, therefore
it does not need to be driven. The controller periodically reads the position of the motor
shaft and sends it as a 32-bit number to the controlled over a TCP connection. The
controlled receives the reference position and moves accordingly. For the control of the
DC motor, the controlled implements a simple P regulator.

For the operation of the controller, a single thread is enough. The controlled uses
two threads. One thread is responsible for the TCP transfers, the other implements
the function of the P controller. A mutex is used to protect the common structure for
the storage of the reference value.

30

Chapter 6
Conclusion and Further Work

In the extent of this thesis, a low-cost solution for a wired multidrop communication
has been implemented. The emphasis was placed on reliability, predictability, and ease
of integration. The solution integrates 10BASE-T1S SPI MAC-PHYs with host MCUs
running the NuttX operating system. Data throughput rates of up to 5 Mbits/sec were
measured with maximum RTT latencies below 10 ms. The throughput and worst-case
latency properties could be further improved by setting up the PLCA reconciliation in
the network.

Due to the selection of the NuttX RTOS as an operating system for the end de-
vices, and as a result of utilizing the Ethernet standard in the core of the system, the
application code is highly portable.

The work implemented in this work will be submitted to NuttX mainline for review
and integration. The pull request with the changes is in preparation.

The work on the project will continue in collaboration with the NuttX community.
Funding through the Google Summer of Code 2025 program has been granted for the
project extension. As part of the extension, the logic defined by the OA will be separated
from the NCV7410 specific logic to allow code reuse in NuttX drivers for other OA SPI
MAC-PHYs. Support for PLCA configuration will be introduced to NuttX. Possibly
through the definition of new IOCTL calls and integration with network utilities present
in NuttX. Support for other host platforms will be provided. Currently, support for
boards featuring the Microchip SAMV7 ARM processor is planned.

During the work on the demonstrator device, several obstacles were met in the form of
bugs present in the code for the ESP32-C6 quadrature encoder support. With support
from the NuttX community, most of the problems were resolved. In the process, source
of one of the bugs was identified and the proposed solution has been merged into the
NuttX mainline.

After due discussion with the NuttX community, parts of this thesis could be trans-
formed into NuttX documentation.

31

Appendix A
Output of Network Evaluation Utilities

. The response latency between the PC host and one of the ESP32-C6 hosts

root@michal-ThinkPad-X250:~# ping -f 10.0.0.2
PING 10.0.0.2 (10.0.0.2) 56(84) bytes of data.

--- 10.0.0.2 ping statistics ---
17795 packets transmitted, 17794 received, 0,00561956% packet loss
rtt min/avg/max/mdev = 0.724/0.797/3.784/0.051 ms

. TCP and UDP data throughput between two ESP32-C6 hosts with no artificial traffic

nsh> iperf -c 10.0.0.2
IP: 10.0.0.4

mode=tcp-client sip=10.0.0.4:5001,dip=10.0.0.2:5001, interval=30, time=30

Interval Transfer Bandwidth
0.00- 30.10 sec 11501568 Bytes 3.06 Mbits/sec

nsh> iperf -u -c 10.0.0.2
IP: 10.0.0.4

mode=udp-client sip=10.0.0.4:5001,dip=10.0.0.2:5001, interval=30, time=30

Interval Transfer Bandwidth
0.00- 30.10 sec 19169856 Bytes 5.09 Mbits/sec

. TCP and UDP data throughput between two ESP32-C6 hosts with added artificial
traffic by the PC host flooding one of the ESP32-C6 hosts with ping, the ping latency
is also provided.

nsh> iperf -c 10.0.0.2
IP: 10.0.0.4

mode=tcp-client sip=10.0.0.4:5001,dip=10.0.0.2:5001, interval=30, time=30

Interval Transfer Bandwidth
0.00- 30.10 sec 10895360 Bytes 2.90 Mbits/sec

PING 10.0.0.4 (10.0.0.4) 56(84) bytes of data.

--- 10.0.0.4 ping statistics ---
30049 packets transmitted, 30048 received, 0,0033279% packet loss
rtt min/avg/max/mdev = 0.726/1.294/5.094/0.694 ms

33

A Output of Network Evaluation Utilities .
nsh> iperf -u -c 10.0.0.2

IP: 10.0.0.4
mode=udp-client sip=10.0.0.4:5001,dip=10.0.0.2:5001, interval=30, time=30

Interval Transfer Bandwidth
0.00- 30.10 sec 17580096 Bytes 4.67 Mbits/sec

root@michal-ThinkPad-X250:~# ping -f 10.0.0.4
PING 10.0.0.4 (10.0.0.4) 56(84) bytes of data.

--- 10.0.0.4 ping statistics ---
18704 packets transmitted, 18703 received, 0,00534645% packet loss
rtt min/avg/max/mdev = 0.728/1.830/4.349/0.783 ms

34

References

[1] Kugelstadt, Thomas. Application Report: The RS-485 Design Guide. Texas
Instruments. 2021. Available from https://www.ti.com/lit/an/slla272d/
slla272d.pdf.

[2] CAN in Automation. Controller Area Network classic (CAN CC). Available
from https://www.can-cia.org/can-knowledge/can-cc.

[3] CAN in Automation. CAN XL (extended data-field length). Available from htt
ps://www.can-cia.org/can-knowledge/can-xl.

[4] IEEE-802.3. IEEE Standard for Ethernet. IEEE Std 802.3-2022
(Revision of IEEE Std 802.3-2018). 2022. Available from DOI
10.1109/IEEESTD.2022.9844436.

[5] OPEN Alliance TC6. OPEN Alliance 10BASE-T1x MAC-PHY Serial Interface.
dec, 2021. Available from https://opensig.org/wp-content/uploads/2023/
12/OPEN_Alliance_10BASET1x_MAC-PHY_Serial_Interface_V1.1.pdf.

[6] Appache NuttX . Available from https://nuttx.apache.org/.
[7] Espressif. ESP32-C6 Series Datasheet. Rev. 1.2.
[8] Ashton, Brennan. Work Queue Deadlocks. Available from https://nuttx.apac

he.org/docs/latest/components/net/wqueuedeadlocks.html.
[9] ANSI/ISO. American National Standard for Programming Languages - C. 1992.

[10] Wikipedia. Abstract Type. Available from https://en.wikipedia.org/wiki/
Abstract_type.

[11] Onsemi. Automotive Ethernet Transceiver (MAC-PHY) 10BASE-T1S MultiDrop
NCV7410. Rev. 0.

35

https://www.ti.com/lit/an/slla272d/slla272d.pdf
https://www.ti.com/lit/an/slla272d/slla272d.pdf
https://www.can-cia.org/can-knowledge/can-cc
https://www.can-cia.org/can-knowledge/can-xl
https://www.can-cia.org/can-knowledge/can-xl
http://dx.doi.org/10.1109/IEEESTD.2022.9844436
https://opensig.org/wp-content/uploads/2023/12/OPEN_Alliance_10BASET1x_MAC-PHY_Serial_Interface_V1.1.pdf
https://opensig.org/wp-content/uploads/2023/12/OPEN_Alliance_10BASET1x_MAC-PHY_Serial_Interface_V1.1.pdf
https://nuttx.apache.org/
https://nuttx.apache.org/docs/latest/components/net/wqueuedeadlocks.html
https://nuttx.apache.org/docs/latest/components/net/wqueuedeadlocks.html
https://en.wikipedia.org/wiki/Abstract_type
https://en.wikipedia.org/wiki/Abstract_type

Appendix B
List of Abbreviations

AND . Bit AND Operation
BSP . Board Support Package
DMA . Direct Memory Access
EMI . Electromagnetic Interference
FIFO . First In First Out
ISR . Interrupt Service Routine
MAC . Media Access Controller
MAC-PHY . Device integrating both the PHY and the MAC
MCU . MicroController Unit
OR . Bit OR Operation
OS . Operating System
PHY . Physical Layer Device
PLCA . Physical Layer Collision Avoidance
RTOS . Real Time Operating System
RTT . Round-Trip Time
RX . Receive
SDK . Software Development Kit
SPI . Serial Peripheral Interface
TX . Transmit
XOR . Exlusive OR logical operation

36

	NuttX RTOS Driver for Single Unshielded Twisted Pair Communication
	TITLE

	Zadání práce
	NuttX RTOS Driver for Single Unshielded Twisted Pair Communication
	Prohlášení o samostatném vypracování ZP
	NuttX RTOS Driver for Single Unshielded Twisted Pair Communication
	Acknowledgement/Declaration
	Abstrakt/Abstract
	Contents
	/Figures
	Introduction
	Technology Overview and Objectives
	The Target Environment
	Selected Communication Standards
	Local Interconnect Network (LIN)
	RS-485
	Controller Area Network (CAN)
	CAN XL
	IEEE 10BASE-T1S

	Technology Choice Discussion
	Operating System Selection
	NuttX
	NuttX Configuration

	OPEN Alliance 10BASE-T1x MAC-PHY Serial Interface
	Control Transaction Protocol
	Data Transaction Protocol

	Testing MAC-PHY Hardware (Onsemi NCV7410)
	Testing Host Device Hardware (ESP32-C6)

	NuttX Network Drivers
	A Network Driver
	NuttX Network Stack Interface
	Network Device Driver State Structure
	Interfacing Callback Functions
	Network Stack Functions
	Expected format of Data Link Layer Packet

	IOB Data Structure
	IOB Allocation Mechanism
	Advantages of IOB buffers

	Upper-Half Network Driver
	Netpackets
	Lower-Half specific data

	Work Queue
	Executing Code in NuttX Work Queues
	Work Queue Drawbacks

	Inheritance in C

	NCV7410 Network Driver Implementation
	Driver Specific Data
	Configuration Exchange Primitives
	Driver Initialization
	Board-Specific Initialization
	General Driver Initialization
	Configuring the MAC-PHY
	OA Protocol Setup
	MAC Address Filtering

	Switching the Interface On and Off
	Asynchronous Code Execution
	Buffer Management and Data Exchange
	Transmitting Data
	Receiving Data
	I/O Work
	Netpacket Allocation
	Quota Considerations

	Interrupt Handling
	Thread Synchronization

	System Evaluation and Testing
	Performance Evaluation
	Network Utilities
	Testing Network
	Evaluation Scenarios and Results

	Testing
	Demonstrator Device

	Conclusion and Further Work
	Output of Network Evaluation Utilities
	References
	List of Abbreviations

